About biological hip joint prostheses and the biomechanical behavior of implanted femur

Main Article Content

Raffaella Aversa
Relly Victoria Virgil Petrescu
Antonio Apicella
Florian Ion Tiberiu Petrescu
صندلی اداری


Biofidel femur Models with finite elements were developed using a specific segmentation combination with computed tomography and solid modeling tools capable of representing bone physiology and structural behavior. These biofidel Finite Element Models (FEM) are used to evaluate the change in the physiological distribution of stress in the prosthesis femur and to evaluate the new design criteria for biopsy biopsy biopsy biopsy. The proposed belief patterns allowed us to adequately take into account the non-isotropic features of the proximal femoral epiphysis and isotropic behavior in diaphysis to explain the critical changes in stress distribution in a femur resected after the implantation of a traditional articular prosthesis. It has been shown that a wide range of femoral diaphyses is completely protected by rigid prostheses that significantly alter the physiological distribution of stress, which should guarantee healthy growth and bone regeneration.


Download data is not yet available.

Article Details

Author Biographies

Raffaella Aversa, Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Relly Victoria Virgil Petrescu, IFToMM


Antonio Apicella, Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Advanced Materials Lab, Department of Architecture and Industrial Design, Second University of Naples, Aversa, Italy

Florian Ion Tiberiu Petrescu, IFToMM

Ph.D. Eng. Florian Ion T. PETRESCU

Senior Lecturer at UPB (Bucharest Polytechnic University), Theory of Mechanisms and Robots department,

Date of birth: March.28.1958; Higher education: Polytechnic University of Bucharest, Faculty of Transport, Road Vehicles Department, graduated in 1982, with overall average 9.63;

Doctoral Thesis: "Theoretical and Applied Contributions About the Dynamic of Planar Mechanisms with Superior Joints".

Expert in: Industrial Design, Mechanical Design, Engines Design, Mechanical Transmissions, Dynamics, Vibrations, Mechanisms, Machines, Robots.


Member ARoTMM, IFToMM, SIAR, FISITA, SRR, AGIR. Member of Board of SRRB (Romanian Society of Robotics).


Annunziata, M., Aversa, R., Apicella, A., Annunziata, A., Apicella, D., Buonaiuto, C., & Guida, L. (2006). In vitro biological response to a light-cured composite when used for cementation of composite inlays, Dental Materials, 22(12), 1081-1085. DOI: 10.1016/J.DENTAL.2005.08.009

Annunziata, M., Guida, L., Perillo, L., Aversa, R. & Passaro, I. (2008). Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J. Mater. Sci. Mater. Med., 19, 3585-3591. DOI: 10.1007/s10856-008-3514-2.

Apicella, D., Aversa, R., Ferro, E., Ianniello, D., & Apicella, A., (2010). The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 93(1), 150-163. doi: 10.1002/jbm.b.31569

Apicella, D., Veltri, M., Balleri, P., Apicella, A., & Ferrari, M. (2011). Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation, Clinical Oral Implants Research, 22(2), 182-188: DOI: 10.1111/j.1600-0501.2010.01979.x

Apicella, D., Aversa, R., Tatullo, M., Simeone, M., Sayed, S., Marrelli, M., & Apicella, A. (2015). Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements, Dental Materials, 31(12), e289-e305, DOI: 10.1016/j.dental.2015.09.016

Ashman R. B., & Rho J. Y. (1988). Elastic modulus of trabecular bone material. J. Biomechanics, 21, 177-181. doi:10.1016/0021-9290(88)90167-4

Ashman R. B., Cowin S. C., Van Buskirk W. C., & Rice J. C. (1984). A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomechanics. 17(5), 349-361. doi: 10.1016/0021-9290(84)90029-0

Aversa, R., Apicella, D., Perillo, L., Sorrentino, R., Zarone, F., Ferrari, F., & Apicella, A. (2009). Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental materials, 25, 678–690. doi: 10.1016/j.dental.2008.10.015

Aversa, R., Petrescu, F. I. T., Petrescu, R. V., & Apicella, A. (2016a). Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13, 1060-1067. doi: 10.3844/ajassp.2016.1060.1067

Aversa, R., Parcesepe, D., Petrescu, R. V., Chen, G., Petrescu, F. I. T., Tamburrino, F., & Apicella, A. (2016b). Glassy Amorphous Metal Injection Molded Induced Morphological Defects, Am. J. Applied Sci. 13(12), 1476-1482.

Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016c). Smart-Factory: Optimization and Process Control of Composite Centrifuged Pipes, Am. J. Applied Sci. 13(11), 1330-1341.

Aversa, R., Tamburrino, F., Petrescu, R. V., Petrescu, F. I. T., Artur, M., Chen, G., & Apicella, A. (2016d). Biomechanically Inspired Shape Memory Effect Machines Driven by Muscle like Acting NiTi Alloys, Am. J. Applied Sci. 13(11), 1264-1271.

Aversa, R., Buzea, E. M., Petrescu, R. V., Apicella, A., Neacsa, M., & Petrescu, F. I. T. (2016e). Present a Mechatronic System Having Able to Determine the Concentration of Carotenoids, Am. J. of Eng. and Applied Sci. 9(4), 1106-1111.

Aversa, R., Petrescu, R. V., Sorrentino, R., Petrescu, F. I. T., & Apicella, A. (2016f). Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation, Am. J. of Eng. and Applied Sci. 9(4), 1096-1105.

Aversa, R., Perrotta, V., Petrescu, R. V., Misiano, C., Petrescu, F. I. T., & Apicella, A. (2016g). From Structural Colors to Super-Hydrophobicity and Achromatic Transparent Protective Coatings: Ion Plating Plasma Assisted TiO2 and SiO2 Nano-Film Deposition, Am. J. of Eng. and Applied Sci. 9(4), 1037-1045.

Aversa, R., Petrescu, R. V., Petrescu, F. I. T., & Apicella, A. (2016h). Biomimetic and Evolutionary Design Driven Innovation in Sustainable Products Development, Am. J. of Eng. and Applied Sci. 9(4), 1027-1036.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016i). Mitochondria are Naturally Micro Robots - A review, Am. J. of Eng. and Applied Sci. 9(4), 991-1002.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016j). We are Addicted to Vitamins C and E-A Review, Am. J. of Eng. and Applied Sci. 9(4), 1003-1018.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016k). Physiologic Human Fluids and Swelling Behavior of Hydrophilic Biocompatible Hybrid Ceramo-Polymeric Materials, Am. J. of Eng. and Applied Sci. 9(4), 962-972.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016l). One Can Slow Down the Aging through Antioxidants, Am. J. of Eng. and Applied Sci. 9(4), 1112-1126.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016m). About Homeopathy or ≪Similia Similibus Curentur≫, Am. J. of Eng. and Applied Sci. 9(4), 1164-1172.

Aversa, R., Petrescu, R. V., Apicella, A., & Petrescu, F. I. T. (2016n). The Basic Elements of Life's, Am. J. of Eng. and Applied Sci. 9(4), 1189-1197.

Aversa, R., Petrescu, F. I. T., Petrescu, R. V., & Apicella, A. (2016o). Flexible Stem Trabecular Prostheses, Am. J. of Eng. and Applied Sci. 9(4), 1213-1221.

Aversa, R., Petrescu, R. V. V., Apicella, A., & Petrescu, F. I. T. (2017). Modern Transportation and Photovoltaic Energy for Urban Ecotourism. Transylvanian Review of Administrative Sciences Special Issue, 5-20. doi: 10.24193/tras.SI2017.1

Beaupre G. S., & Hayes W. C. (1985). Finite Element Analysis of a three dimensional open-celled model for trabecular bone. J. Biomech. Eng. 107, 249-56, PMID: 4046566

Bonfield, W., Grynpas, M. D., Tully, A. E., Bowman, J., & Abram, J. (1981). Hydroxyapatite reinforced polyethylene — a mechanically compatible implant material for bone replacement. Biomaterials, 2, 185-186. doi: 10.1016/0142-9612(81)90050-8

Burnstein A., Reilly D. T., & Martens M. (1976). Aging of bone tissue: Mechanical properties., J. of Bone and joint Surgery, 58, 82-86, https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties

Carter D. R., & Hayes W. C. (1977). The compressive behavior of bone as a two phase porous structure. J. of Bone and joint Surgery, 59A: 954, PMID: 561786

Comerun, H. U. (1986). Six-year results with a microporous-coated metal hip prosthesis, Clin. Orthop. 208 81

Čepelak I., Dodig, S., & Čulić, O. (2013). Magnesium-more than a common cation. Med. Sci., 39, 47-68.

Chen, Q., Zhu, C., & Thouas, G. A. (2012). Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites. Progress. Biomater., 1, 1-22. DOI: 10.1186/2194-0517-1-2

Cormack, A. N., & Tilocca, A. (2012). Structure and biological activity of glasses and ceramics. Philos. Trans. Math. Phys. Eng. Sci., 370, 1271-1280. DOI: 10.1098/rsta.2011.0371

Dalstyra, M., Huiskes, R., Odgaard, A., & Van Erning, L. (1993). Mechanical and textural properties of Pelvic Trabecular Bone. J. Biomechanics, 26(4-5), 349-361, DOI: 10.1016/0021-9290(93)90014-6

Davis, P. A., Huang, S. J., Nicolais, L., & Ambrosio, L. (1991). Modified PHEMA Hydrogels. In: Szycher M, editor. High performance biomaterials. Lancaster, PA, USA: Technonic. 343–68.

Prashantha, K., Vasanth, K. P. K., Sherigara, B. S., & Prasannakumar S. (2001). Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly-(2-hydroxyethylmethacrylate), synthesis, chemical, mechanical and thermal properties, bull. Mater Sci., 24(5), 535–8.

Filmon, R., Grizon, F., Baslie, M. F., & Chappard, D. (2002). Effects of negatively charged groups (carboxymethyl) on the calcification of poly(2-hydroxyethylmethacrylate). Biomaterials. 23, 3053–9.

Frost, H. M. (1064). Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas. 22–25.

Frost, H. M. (1990). Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec. 226, 414–22.

Frost, H. M. (2003). update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 74, 3–15.

Frost, H. M. (1994). Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64, 175–88.

Gramanzini, M., Gargiulo, S., Zarone, F., Megna, R., Apicella, A., Aversa, R., Salvatore, M., Mancini, M., Sorrentino, R., & Brunetti, A., (2016). Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: A pilot study in minipig model. Dental Materials, 32(6), 794-806: DOI: 10.1016/j.dental.2016.03.025

Gorustovich, A. A., Roether, J. A., & Boccaccini, A. R. (2010). Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Eng. Part B Rev., 16, 199-207. DOI: 10.1089/ten.TEB.2009.0416

Halpin J. C., & Kardos J. L. (1976). Halpin-Tsai equations: A review, Polymer Engineering and Science, 16(5), 344-352

Heinemann, S., Heinemann, C., Wenisch, S., Alt, V., & Worch, H. (2013). Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomaterialia, 9, 4878-4888. DOI: 10.1016/j.actbio.2012.10.010

Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295, 1014-1017. DOI: 10.1126/science.1067404

Hench, L. L., & Thompson, I. (2010). Twenty-first century challenges for biomaterials. J. Royal Society Interface, 7, S379-S391. DOI: 10.1098/rsif.2010.0151.focus

Hench, L. L., & Wilson, J. (1993). An introduction to bioceramics. World Sci., 1, 396-396. DOI: 10.1142/2028

Hoppe, A., Güldal, N. S., & Boccaccini, A. R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 32, 2757-2774. DOI: 10.1016/j.biomaterials.2011.01.004

Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudula, B., & Slooff, T. J. (1987). Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 20, 1135–1150.

Hutmacher, D.W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543. DOI: 10.1016/S0142-9612(00)00121-6

Jones, J. R., & Clare, A. G. (2012). Bio-Glasses. An Introduction. 1st Edn., Wiley, Chichester, ISBN-10: 1118346475, 320.

Julien, M., Magne, D., Masson, M., Rolli-Derkinderen, M., & Chassande, O. (2007). Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology, 148, 530-537. DOI: 10.1210/en.2006-0763

Kabra, B., Gehrke, S. H., Hwang, S. T., & Ritschel, W. (1991). Modification of the dynamic swelling behaviour of pHEMA. J Appl Polym Sci. 42, 2409–16.

Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491. doi: 10.1016/j.biomaterials.2005.02.002

Kim, H. W., Knowles, J. C., & Kim, H. E. (2004). Development of hydroxyapatite bone scaffold for controlled drug release via poly(ϵ-caprolactone) and hydroxyapatite hybrid coatings. J. Biomed. Mater. Res. Part B: Applied Biomater., 70, 240-249. DOI: 10.1002/jbm.b.30038

Kumar, A., Rathi, A., Singh, J., & Sharma, N. K. (2016). Studies on Titanium Hip Joint Implants using Finite Element Simulation. In Proceedings of the World Congress on Engineering, 2.

Kummer, B. (1986). Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory, Zeitschrift fur Orthopadie und Ihre Grenzgebiete, 124(2), 179-187.

Mano, J. F., Sousa, R. A., Boesel, L. F., Neves, N. M., & Reis, R. L. (2004). Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments. Composi. Sci. Technol., 64, 789-817. doi: 10.1016/j.compscitech.2003.09.001

Mazaheri, M., Hassani, K., Karimi, A., & Izadi, F. (2016). Finite Element Study of Composite Materials as an Alternative for Metal Hip Prothesis Using Variable Load. Materials Focus, 5(5), 430-435.

Mirsayar, M. M., & Park, P. (2016). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240.

Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017). Extended MTSN criterion for fracture analysis of soda lime glass, Engineering Fracture Mechanics 178, 50–59, ISSN: 0013-7944, doi: 10.1016/j.engfracmech.2017.04.018

Morales-Hernandez, D. G., Genetos, D. C., Working, D. M., Murphy, K. C., & Leich, J. K. (2012). Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J. Funct. Biomat., 23, 382-397. doi: 10.3390/jfb3020382

Mouriño, V., Cattalini, J. P., & Boccaccini, A. R. (2012). Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. Royal Society Interface, 9, 401-419. doi: 10.1098/rsif.2011.0611

Montheard, J. P., Chatzopoulos, M., Chappard, D. (1992). 2-hydroxyethylmethacrylate HEMA; chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev. 32, 1–34.

Mullender, M. G., & Huiskes, R. (1995). A proposal for the regulatory mechanism of Wolff’s law. J Orthop Res.13, 503–512. doi: 10.1002/jor.1100130405

Oh, I., & Harris W. H. (1976). Proximal distribution in the loaded femur. J. of Bone and Joint Surgery, 60-A(1) PMID: 624762 https://www.researchgate.net/publication/21906817_Aging_of_Bone_Tissue_Mechanical_Properties

Peluso, G., Petillo, O., Anderson, J. M., Ambrosio, M., Nicolais, L., Melone, M. A. B., Eschbach, F. O., & Huang, S. J. (1997). The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 34, 327–36.

Perillo, L., Sorrentino, R., Apicella, D., Quaranta, A. C., Gherlone, E.D., Ferrari, M., Aversa, R., & Apicella, A. (2010). Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. The journal of adhesive dentistry, 12(5), 403-413: ISSN: 14615185

Petrescu, F. I. T., & Calautit, K. J. (2016a). About Nano Fusion and Dynamic Fusion, Am. J. Applied Sci. 13(3), 261-266.

Petrescu, F. I. T., & Calautit, K. J. (2016b). About the Light Dimensions, Am. J. Applied Sci. 13(3), 321-325.

Petrescu, F. L., Buzea, E., Nănuţ, L., Neacşa, M., & Nan, C. (2015). The role of antioxidants in slowing aging of skin in a human, Analele Univers. Craiova Biologie Horticultura Tehn. Prel. Prod. Agr. Ing. Med., 20, 567-574.

Petrescu, F. I. T., Apicella, A., Aversa, R., Petrescu, R. V., Calautit, J. K., & Mirsayar, M. (2016a). Something about the Mechanical Moment of Inertia, Am. J. Applied Sci. 13(11), 1085-1090.

Petrescu, R. V., Aversa, R., Apicella, A., Li, S., Chen, G., Mirsayar, M., & Petrescu, F. I. T. (2016b). Something about Electron Dimension, Am. J. Applied Sci. 13(11), 1272-1276.

Petrescu, R. V., Aversa, R., Apicella, A., Berto, F., Li, S., & Petrescu, F. I. T. (2016c). Ecosphere Protection through Green Energy, Am. J. Applied Sci. 13(10), 1027-1032.

Petrescu, F. I. T., Apicella, A., Petrescu, R. V., Kozaitis, S. P., Bucinell, R. B., Aversa, R., & Abu-Lebdeh, T. M. (2016d). Environmental Protection through Nuclear Energy, Am. J. Applied Sci. 13(9), 941-946.

Petrescu, R. V., Aversa, R., Apicella, A., Petrescu, F. I. T. (2016e). Future Medicine Services Robotics, Am. J. of Eng. and Applied Sci. 9(4), 1062-1087.

Petrescu, F. I. T., Petrescu, R. V., & Mirsayar, M. M. (2017). The Computer Algorithm for Machine Equations of Classical Distribution. Journal of Materials and Engineering Structures, 4(4), 193-209. http://revue.ummto.dz/index.php/JMES/article/view/1590

Petrescu, F. I. T., Petrescu, R. V., & Mirsayar, M. M. (2018). Inverse Kinematics to a Stewart Platform. Journal of Materials and Engineering Structures, 5(2), 111-122. http://revue.ummto.dz/index.php/JMES/article/view/1623

Petrescu, F. I. T. (2018). Comp. Part. Mech. https://doi.org/10.1007/s40571-018-0206-7

Reilly, D., & Burstein A. H. (1974). The mechanical properties of cortical bone. The J. Of bone and Joint Surgery, 56a(5), 1001-1021

Reilly D. T., & Burnestain A. H. (1975). The elastic and ultimate properties of compact bone tissue. J. Biomechanics, 8, 393-405, doi:10.1016/0021-9290(75)90075-5

Rohlmann, A., Mossner, U., Bergmann, G., & Kolbel R. (1982). Finite Element Analysis and experimental investigations of stresses in a femur. J. Biomed. Eng. 4. doi:10.1016/0141-5425(82)90009-7

Schiraldi, C., D’agostino, A., Oliva, A., Flamma, F., De Rosa, A., Apicella, A., Aversa, R., & De Rosa, M. (2004). Development of hybridmaterials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 25(17), 3645–3653.

Sorrentino, R., Apicella, D., Riccio, C., Gherlone, E. D., Zarone, F., Aversa, R. E., Garcia-Godoy, F. F., Ferrari, M., & Apicella, A. (2009). Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 91(2), 727-736; doi: 10.1002/jbm.b.31449 (10)

Sorrentino, R., Aversa, R., Ferro, V., Auriemma, T., Zarone, F., Ferrari, M., Apicella, A. (2007). Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater. 23, 983–93: doi: 10.1016/j.dental.2006.08.006

Schwartz-Dabney, C. L., & Dechow, P. C. (2003). Variation in Cortical Material Properties Throughout the Human Dentate Mandible. American Journal of Physical Anthropology. 120, 252-277.

Tamar, G., & Hashin, Z. V. I. (1980). Analysis of viscoelastic behavior of bones on the basis of microstructure. J. Biomechanics, 13, 89-96: DOI: http://dx.doi.org/10.1016/0021-9290(80)90182-7

Taylor, D., Hazenberg, J. G., & Lee T. C. (2007). Living with cracks: Damage and repair in human bone. Nat Mater. 6, 263–268.

Töyräsa, J., Lyyra-Laitinena, T., Niinimäkib, M., Lindgrenc, R., Nieminenb, M. T., Kivirantad, I., & Jurvelina, J. S. (2001). Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. Journal of Biomechanics, 34(2), 251-256

Weinans, H., Huiskes, R., &Grootenboer, H. J. (1992). The behavior of adaptive bone remodeling simulation models. J Biomech. 25, 1425–1441. PMID: 1491020

Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald.

Most read articles by the same author(s)

1 2 3 4 > >> 
فروشگاه اینترنتی