Risk analysis model and agricultural derivative market use: a conceptual review

Main Article Content

João Batista Ferreira
Luiz Gonzaga Castro Junior
صندلی اداری


This research aims to build conceptual guidelines regarding price risk management through the agricultural derivatives market. Specifically, to identify the common price risk management methods and strategies employed, the risk analysis models of derivative markets, and the barriers to agricultural risk management. This is an integrative review, the search for literature on the models of risk management analysis of agricultural derivatives started by listing the largest possible number of keywords on the topic, in the Scopus and Web of Science. Forty-five publications were found meeting the pre-established criteria that served as the basis for this research.  Based on the literature review, we list the main information on the subject and we also propose a theoretical model for analyzing the market risks of agricultural derivatives. Still, it was possible to notice that among the methodologies for measuring market risk, Value at Risk (VaR) stands out. We exemplify and demonstrate the existence of several statistical analyzes and mathematical models, as well as software available for the management of price risks. It is concluded that strategies with the futures and options market, even though they are the most efficient for risk management, lack incentives to become practical.


Download data is not yet available.

Article Details

Author Biography

Luiz Gonzaga Castro Junior, Universidade Federal de Lavras - UFLA/MG

PhD in Applied Economics from the University of São Paulo. Full Professor, Department of Administration and Economics, Federal University of Lavras, Brazil. Coordinator of the Market Intelligence Center (CIM) and leading researcher of the Coffee Competitive Intelligence Bureau. Practice areas: competitive intelligence, commercialization, derivatives markets, cost management and entrepreneurship. ORCID: https://orcid.org/0000-0002-1215-0183.


Ali, M., Man, N., & Muharam, F. M. (2019). Perceptions of Malaysian farmers regarding their knowledge in agricultural risk management. J. Agric. Plant Sci, 29(4). http://www.thejaps.org.pk/docs/v-29-04/34.pdf

Amin, F. A. M., Yahya, S. F., Ibrahim, S. A. S., & Kamari, M. S. M. (2018). Portfolio risk measurement based on value at risk (VaR). In AIP Conference Proceedings, 1974(1), 020012. AIP Publishing LLC.

Antón, J., Cattaneo, A., Kimura, S., & Lankoski, J. (2013). Agricultural risk management policies under climate uncertainty. Global environmental change, 23(6), 1726-1736. https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1044224

Assa, H. (2016). Financial engineering in pricing agricultural derivatives based on demand and volatility. Agricultural Finance Review. https://doi.org/10.1108/AFR-11-2015-0053

Barnes, A. P., Islam, M. M., & Toma, L. (2013). Heterogeneity in climate change risk perception amongst dairy farmers: A latent class clustering analysis. Applied Geography, 41, 105-115. https://doi.org/10.1016/j.apgeog.2013.03.011

Calegari, I. P., Baigorri, M. C., & Freire, F. D. S. (2012). Agricultural derivatives as a price risk management tool [Portuguese]. Custos e @gronegócio online, 8(1). http://www.custoseagronegocioonline.com.br/especialv8/Derivativos.pdf

Chen, S., Härdle, W. K., & Cabrera, B. L. (2019). Regularization approach for network modeling of German power derivative market. Energy Economics, 83, 180-196.

Clapp, J., & Helleiner, E. (2012). Troubled futures? The global food crisis and the politics of agricultural derivatives regulation. Review of International Political Economy, 19(2), 181-207. https://doi.org/10.1080/09692290.2010.514528

Crane, T. A., Roncoli, C., Paz, J., Breuer, N., Broad, K., Ingram, K. T., & Hoogenboom, G. (2010). Forecast skill and farmers’ skills: Seasonal climate forecasts and agricultural risk management in the southeastern United States. Weather, Climate and Society, 2(1), 44-59. https://doi.org/10.1175/2009WCAS1006.1

Cresti, B. (2005). US domestic barter: An empirical investigation. Applied Economics, 37(17), 1953-1966. https://doi.org/10.1080/00036840500193559

Dase, R. K., & Pawar, D. D. (2010). Application of Artificial Neural Network for stock market predictions: A review of literature. International Journal of Machine Intelligence, 2(2), 14-17.

Duong, T. T., Brewer, T., Luck, J., & Zander, K. (2019). A global review of farmers’ perceptions of agricultural risks and risk management strategies. Agriculture, 9(1), 10. https://doi.org/10.3390/agriculture9010010

Fraisse, C. W., Breuer, N. E., Zierden, D., Bellow, J. G., Paz, J., Cabrera, V. E., & Jones, J. W. (2006). AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Computers and electronics in agriculture, 53(1), 13-27. https://doi.org/10.1016/j.compag.2006.03.002

Finger, M. I. F., & Waquil, P. D. (2013). Perception and risk management measures by irrigated rice producers on the Western Frontier of Rio Grande do Sul [Portuguese]. Ciência Rural, 43 (5), 930-936. https://doi.org/10.1590/S0103-84782013005000033

Ghorbel, A., & Trabelsi, A. (2009). Measure of financial risk using conditional extreme value copulas with EVT margins. Journal of Risk, 11(4), 51.

Gudendorf, G., & Segers, J. (2010). Copulas of extreme values. In Copula Theory and its applications. Springer, Berlin, Heidelberg, 127-145.

Guilleminot, B., Ohana, J., & Ohana, S. (2014) The interaction of speculators and index investors in agricultural derivatives markets. Agricultural economics, 45(6), 767-792. https://doi.org/10.1111/agec.12122

Gródek-Szostak, Z., Malik, G., Kajrunajtys, D., Szeląg-Sikora, A., Sikora, J., Kuboń, M., & Kapusta-Duch, J. (2019). Modeling the dependency between extreme prices of selected agricultural products on the derivatives market using the linkage function. Sustainability, 11(15), 4144.

Hart, C. E., Lence, S. H., Hayes, D. J., & Jin, N. (2016). Price mean reversion, seasonality, and options markets. American Journal of Agricultural Economics, 98(3), 707-725. https://doi.org/10.1093/ajae/aav045

Hazell, P. B., & Hess, U. (2010). Drought insurance for agricultural development and food security in dryland areas. Food Security, 2(4), 395-405. https://doi.org/10.1007/s12571-010-0087y

He, L. Y., Yang, S., Xie, W. S., & Han, Z. H. (2014). Contemporaneous and asymmetric properties in the price-volume relationships in China's agricultural futures markets. Emerging Markets Finance and Trade, 50(sup1), 148-166. https://doi.org/10.2753/REE1540-496X5001S110

Hosseini, Y. S., Zibaei, M., & Allen, D. E. (2010). The Initial Specification of Viable Futures Contracts: The Use of a New Computational Method of Value at Risk in Iranian Agricultural Commodities Market.

Huh, S. W., Lin, H., & Mello, A. S. (2015). Options market makers׳ hedging and informed trading: Theory and evidence. Journal of Financial Markets, 23, 26-58. https://doi.org/10.1016/j.finmar.2015.01.001

Jackson, E., Quaddus, M., Islam, N., & Stanton, J. (2009). Sociological factors affecting agricultural price risk management in Australia. Rural sociology, 74(4), 546-572. https://doi.org/10.1111/j.1549-0831.2009.tb00704.x

Jia, R. L., Wang, D. H., Tu, J. Q., & Li, S. P. (2016). Correlation between agricultural markets in dynamic perspective—Evidence from China and the US futures markets. Physica A: Statistical Mechanics and its Applications, 464, 83-92. https://doi.org/10.1016/j.physa.2016.07.048

Jiang, H., Todorova, N., Roca, E., & Su, J. J. (2017). Dynamics of volatility transmission between the US and the Chinese agricultural futures markets. Applied Economics, 49(34), 3435-3452. https://doi.org/10.1080/00036846.2016.1262517

Klopper, E., Vogel, C. H., & Landman, W. A. (2006). Seasonal climate forecasts–potential agricultural-risk management tools? Climatic Change, 76(1-2), 73-90. DOI: https://doi.org/10.1007/s10584-005-9019-9

Kumar, R. (2020). Predicting Wheat Futures Prices in India. Asia-Pacific Financial Markets, 1-20.

Linsmeier, T. J. E., & Pearson, N. D. (2000). Value at risk. Financial Analysts Journal, 56(2), 47–67.

Lorant, A., & Farkas, M. F. (2015). Risk management in the agricultural sector with special attention to insurance. Polish journal of management studies, 11(2), 71-82.

Marston, J. M. (2011). Archaeological markers of agricultural risk management. Journal of Anthropological Archaeology, 30(2), 190-205. https://doi.org/10.1016/j.jaa.2011.01.002

Meinke, H., Sivakumar, M. V. K., Motha, R. P., & Nelson, R. (2007). Preface: Climate predictions for better agricultural risk management. Australian Journal of Agricultural Research, 58(10), 935-938. https://doi.org/10.1071/ARv58n10_PR

Miao, X., Yu, B., Xi, B., & Tang, Y. H. (2011). Risk and regulation of emerging price volatility of non-staple agricultural commodity in China. African Journal of Agricultural Research, 6(5), 1251-1256.

Morgan, W., Cotter, J., & Dowd, K. (2012). Extreme measures of agricultural financial risk. Journal of Agricultural Economics, 63(1), 65-82. https://doi.org/10.1111/j.1477-9552.2011.00322.x

Myers, R. J., Sexton, R. J., & Tomek, W. G. (2010). A century of research on agricultural markets. American Journal of Agricultural Economics, 92(2), 376-403. https://doi.org/10.1093/ajae/aaq014

Mühlen, A. S. R. W., Cezar, I. M., & Costa, F. P. (2013). Price risk in soy commercialization: use of derivatives by rural producers in Maracaju-MS, Brazil [Portuguese]. Ciencia Rural, 43 (5), 937-943. https://doi.org/10.1590/S0103-84782013005000031

Paris, Q. (2018). Positive Mathematical Programming and Risk Analysis. Bio-based and Applied Economics, 7(3), 191-215. https://doi.org/10.22004 / ag.econ.301892

Porth, L., & Assa, H. (2015). A financial engineering approach to pricing agricultural insurances. Agricultural Finance Review, 75(1), 63-76. https://www.emerald.com/insight/content/doi/10.1108/AFR-12-2014-0041/full/html

Ryu, D., & Yang, H. (2020). Noise traders, mispricing, and price adjustments in derivatives markets. The European Journal of Finance, 26(6), 480-499. https://doi.org/10.1080/1351847X.2019.1692887

Severini, S., Biagini, L., & Finger, R. (2019). Modeling agricultural risk management policies–The implementation of the Income Stabilization Tool in Italy. Journal of Policy Modeling, 41(1), 140-155. https://doi.org/10.1016/j.jpolmod.2018.03.003

Souza, I. A. (2017). Gestão de risco de mercado: mensuração do Value-at-Risk (VaR) comparando a exigência de capital em diferentes abordagens.

Thilmany, D., & Blank, S. C. (1996). FLCs: An analysis of labor management transfers among California agricultural producers. Agribusiness: An International Journal, 12(1), 37-49.

Triantafyllou, A., Dotsis, G., & Sarris, A. (2020). Assessing the vulnerability to price spikes in agricultural commodity markets. Journal of Agricultural Economics, 71(3), 631-651. https://doi.org/10.1111/1477-9552.12377

Toledo Filho, J. R., Cardoso, A. F., & Santos, C. C. (2009). Custo e benefícios dos derivativos agropecuários: utilização de butterfly de put no incremento do resultado em contratos de café. Custos e @gronegócio online, 3(5), 36-54. http://www.custoseagronegocioonline.com.br/numero3v5/derivativos.pdf

Torraco, R. J. (2016). Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review, 15(4), 404-428. https://doi.org/10.1177/1534484316671606

Vedenov, D. V., & Barnett, B. J. (2004). Efficiency of weather derivatives as primary crop insurance instruments. Journal of Agricultural and Resource Economics, 387-403. https:/doi.org/10.22004/ag.econ.30916

Vogel, C., & O’brien, K. (2006). Who can eat information? Examining the effectiveness of seasonal climate forecasts and regional climate-risk management strategies. Climate Research, 33(1), 111-122. https:/doi.org/10.3354/CR033111

Xi, W., Hayes, D., & Lence, S. H. (2019). Variance risk premia for agricultural commodities. Agricultural Finance Review. https://doi.org/10.1108/AFR-07-2018-0056

Xu, Y., Pan, F., Wang, C., & Li, J. (2019). Dynamic Price Discovery Process of Chinese Agricultural Futures Markets: An Empirical Study Based on the Rolling Window Approach. Journal of Agricultural and Applied Economics, 51(4), 664-681. https://doi.org/10.1017/aae.2019.23

Wauters, E., Van Winsen, F., De Mey, Y., & Lauwers, L. (2014). Risk perception, attitudes towards risk and risk management: evidence and implications. Agricultural Economics, 60(9), 389-405. http://hdl.handle.net/1854/LU-5757619

Zhang, H., & Watada, J. (2019). An analysis of the arbitrage efficiency of the Chinese SSE 50ETF options market. International Review of Economics & Finance, 59, 474-489. https://doi.org/10.1016/j.iref.2018.10.011

فروشگاه اینترنتی