Natural fiber for reinforcement in matrix polymeric

Main Article Content

Raimundo Nonato Alves da Silva
José Costa de Macedo Neto
Solenise Pinto Rodrigues Kimura
صندلی اداری

Abstract

The natural fiber market has been growing extraordinarily. Hereupon the current work presents the natural fiber of the periquiteira tree Cochlospermum orinocense of the Amazon forest. The chemical composition, physical aspects, morphology, thermal and mechanical properties of this fiber will be discussed. The thermal stability of the fiber samples was about 200 °C. The decomposition of cellulose and hemicelluloses in the fibers occurred at 300 ºC and above, while the degradation of the fibers happened above 400 °C. This fiber had good specific strength and good binding properties due to their low weight and presence of high cellulose (60.15wt.%), low lignin (12.03wt.%). More pronounced mass loss indicated the degradation of the amorphous regions of the cellulose, and finally reached a peak of approximately 390 °C.

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biographies

Raimundo Nonato Alves da Silva, Universidade do Estado do Amazonas - UEA

Engenhreiro de Produção, Professor e pesquisador da Escola Superior de Tecnologia-EST

Universidade do Estado do Amazonas - UEA

Departamento de Engenharia de Materiais 

José Costa de Macedo Neto, Universidade do Estado do Amazonas - UEA

Engenhreiro de Materiais, Professor, PhD, e pesquisador da Escola Superior de Tecnologia-EST

Universidade do Estado do Amazonas - UEA

Departamento de Engenharia de Materiais 

Solenise Pinto Rodrigues Kimura, Universidade do Estado do Amazonas - UEA

Química, Professora, PhD, e pesquisadora da Escola Superior de Tecnologia-EST

Universidade do Estado do Amazonas - UEA

Departamento de Engenharia de Materiais 

References

Akin, D. E., Eder, M., Burgert, I., Müssig, J., & Slootmaker, T. (2010). What are natural fibres? Industrial Applications of Natural Fibres. Chichester, UK: John Wiley & Sons, Ltd, 11–48. https://doi.org/10.1002/9780470660324.ch2.

Aquino, R. C. M. P. (2013). Desenvolvimento de compósitos de fibras de piaçava da espécie attalea funifera mart e matriz de resina poliéster. [s. d.]. Tese de D. Sc., UENF, Campos dos Goytacazes, RJ, Brasil, [s. d.]. Available at: http://uenf.br/posgraduacao/engenharia-de-materiais/wp-content/uploads/sites/2/2013/07/regina-coeli.pdf.

Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 79, 115–128. DOI 10.1016/j.conbuildmat.2015.01.035.

Biagiotti, J., Puglia, D., & Kenny, J. M. (2004). A review on natural fibre-based composites-part I. Journal of Natural Fibers, 1(2), 37–68. DOI 10.1300/J395v01n02_04.

Motta, L. A. C., & Agopyan, V. Caracterização de fibras curtas empregadas na construção civil. São Paulo, Brasil: [s. n.], 2007. Available at: https://repositorio.usp.br/item/001634116.

Easwara Prasad, G. L., Keerthi Gowda, B. S., & Velmurugan, R. (2018). A Study on Mechanical Properties of Treated Sisal Polyester Composites. IJARSET. [S. l.: s. n.], 6, 179–185. DOI 10.1007/978-3-319-63408-1_18.

Elanchezhian, C., Ramnath, B. V., Ramakrishnan, G., Rajendrakumar, M., Naveenkumar, V., & Saravanakumar, M. K. (2018). Review on mechanical properties of natural fiber composites. Materials Today: Proceedings, 5(1), 1785–1790. DOI 10.1016/j.matpr.2017.11.276.

Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596. DOI 10.1016/j.progpolymsci.2012.04.003.

Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299(1), 9–26. DOI 10.1002/mame.201300008.

Faruk, O., Bledzki, A. K., Fink, H. P., Sain, M., Mohanty, A. K., Misra, M., Drzal, L. T., Cheung, H. Yan; Ho, M., Lau, K. T., Cardona, F., & Hui, D. (2002). Sustainable bio-composites from renewable resources in green materials world. Macromolecular Materials and Engineering. DOI https://doi.org/10.1023/A:1021013921916.

Fávaro, S. L., Lopes, M. S., Vieira De Carvalho Neto, A. G., Rogério De Santana, R., & Radovanovic, E. (2010). Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites Part A: Applied Science and Manufacturing, 41(1), 154–160. DOI 10.1016/j.compositesa.2009.09.021.

Fiore, V., Di Bella, G., & Valenza, A. (2015). The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 68, 14–21. DOI 10.1016/j.compositesb.2014.08.025.

Fonseca, J. C. P., Da Silva, J. A., Amato, R. S. O., Silvar, N., Neto, J. C. M., De Freitas, B. M., Pascoaloto, D., Souza, R. R., & Kimura, S. P. R. (2018). Caracterização de fibras vegetais da amazônia com potencial para reforço em material polimérico. Blucher Chemical Engineering Proceedings [...]. São Paulo: Editora Blucher, Sep. 2018. p. 1936–1939. DOI 10.5151/cobeq2018-PT.0512.

Guimarães, J. L., Frollini, E., Da Silva, C. G., Wypych, F., & Satyanarayana, K. G. (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 30(3), 407–415. DOI 10.1016/j.indcrop.2009.07.013.

Hyness, N. R. J., Vignesh, N. J., Senthamaraikannan, P., Saravanakumar, S. S., & Sanjay, M. R. (2018). Characterization of new natural cellulosic fiber from heteropogon contortus plant. Journal of Natural Fibers, 15(1), 146–153. DOI 10.1080/15440478.2017.1321516.

Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18. DOI 10.1016/j.carbpol.2011.04.043.

Joseph, K., Medeiros, E. S., & Carvalho, L. H. (1999). Compósitos de matriz poliéster reforçados por fibras curtas de sisal. Polímeros, 9(4), 136–141. DOI 10.1590/S0104-14281999000400023.

Manalo, A. C., Wani, E., Zukarnain, N. A., Karunasena, W., & Lau, K. T. (2015). Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Composites Part B: Engineering, 80, 73–83. DOI 10.1016/j.compositesb.2015.05.033.

Miranda, C. S., Fiuza, R. P., Carvalho, R. F., & José, N. M. (2014). Effect of surface treatment on properties of bagasse piassava fiber attalea funifera martius. Química Nova, 38, 161–165. DOI 10.5935/0100-4042.20140303.

Mohanty, A. K., Misr, M., & Drzal, L. T. (2002). Sustainable Bio-Composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment. DOI https://doi.org/10.1023/A:1021013921916.

Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149–159. DOI 10.1007/s10570-007-9145-9.

Morassi, J. O. (1994). Fibras naturais: aspectos gerais e aplicação na indústria automobilística. Local: Mercedes Benz do Brazil, 1259–1262. Available at: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/27111/1/PA0396.pdf.

Mwaikambo, L. Y., & Ansell, M. P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekulare Chemie, 272(1), 108–116. DOI 10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9.

Nopparut, A., & Amornsakchai, T. (2016). Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polymer Testing, 52, 141–149. DOI 10.1016/j.polymertesting.2016.04.012.

Oliveira, I. R. C. (2013). Propriedades mecânicas, físicas e químicas de compósitos cimentícios reforçados com fibras longas de juta e de malva. [s. d.]. Federal University of Amazon, [s. d.]. Available at: http://tede.ufam.edu.br/handle/tede/3477.

Perry, D. R., & Farnfield, C. A. (1975). Identification of Textile Materials. The Textile Institute, Manchester. [S. l.: s. n.].

Ramezani Kakroodi, A., Kazemi, Y., & Rodrigue, D. (2013). Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 51, 337–344. DOI 10.1016/j.compositesb.2013.03.032.

Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 38(7), 1694–1709. DOI 10.1016/j.compositesa.2007.02.006.

Sawsen, C., Fouzia, K., Mohamed, B., & Moussa, G. (2015). Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials, 79, 229–235. DOI 10.1016/j.conbuildmat.2014.12.091.

Scalici, T., Fiore, V., Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering, 94, 167–175. DOI 10.1016/j.compositesb.2016.03.053.

Silva, R. N. A., Cruz, L. C., Dias, W. S., Freitas, B. M., Kimura, S. P. R., Moreira, G. S., Neto, J. C. M., Bezerra, V. C., & Cruz, S. (2020). Comparative study of mechanical properties of polymeric composite materials with polyester matrix using natural and synthetic fibers as reinforcement. scientia-amazonia.org, 01(1), 1–7. Available at: http://scientia-amazonia.org/wp-content/uploads/2019/09/v.-9-n.1-E1-E7-2020.pdf.

Sood, M., Dharmpal, D., & Gupta, V. K. (2015). Effect of Fiber Chemical Treatment on Mechanical Properties of Sisal Fiber/Recycled HDPE Composite. Materials Today: Proceedings, 2(4–5), 3149–3155. DOI 10.1016/j.matpr.2015.07.103.

Sood, M., Dwivedi, G. (2018). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 27(4), 775–783, Dec. 2018. DOI 10.1016/j.ejpe.2017.11.005.

Tita, S. P. S., Paiva, J. M. F., & Frollini, E. (2002). Resistência ao Impacto e Outras Propriedades de Compósitos Lignocelulósicos: Matrizes Termofixas Fenólicas Reforçadas com Fibras de Bagaço de Cana-de-açúcar. Polímeros, 12(4), 228–239. DOI 10.1590/S0104-14282002000400005.

Tomczak, F., Satyanarayana, K. G., & Sydenstricker, T. H. D. (2007). Studies on lignocellulosic fibers of Brazil: Part III – Morphology and properties of Brazilian curauá fibers. Composites Part A: Applied Science and Manufacturing, 38(10), 2227–2236. DOI 10.1016/j.compositesa.2007.06.005.

Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Ana. Chem.

Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials, 112, 168–182. DOI 10.1016/j.conbuildmat.2016.02.182.

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. DOI 10.1016/j.fuel.2006.12.013.

فروشگاه اینترنتی