Integration of risk analysis methods in aerospace research projects

Main Article Content

Sarah Francisca de Souza Borges
Mischel Carmen Neyra Belderrain
Moacyr Machado Cardoso Junior
Diogo Silva Castilho

Abstract

Organizations are exposed to several types of risks, such as environmental, legal, operational, financial, and technological; that are subjected to epistemic uncertainty. In this context, a contemporary issue is how to deal with accidents, with greater difficulty in understanding the sociotechnical system, due to its complex and dynamic characteristics, in an attempt to prevent accidents based on components’ behavior. Although, for most complex systems and projects, a record of the exposure to hazards is incomplete or nonexistent, especially when it is highly innovative. This study developed a risk analysis framework for complex aerospace research projects by integrating different methods: problem structuring, safety control action analysis, and prioritization of results. Three methods are proposed: (1) Soft Systems Methodology (SSM) for initial review and understanding of the problem situation, and preliminary identification of hazards and losses; (2) Systems-Theoretic Process Analysis (STPA), to identify Unsafe Control Actions (UCAs) and their causal scenarios; and (3), Preferences Sorting Technique by Similarity to Ideal Solution (TOPSIS Fuzzy) for prioritization of the UCAs and mitigating causal scenarios. This proposal was applied to the Liquid Propulsion Injection Systems Laboratory (CEPROS), and, through the SSM, 7 hazards and 4 losses were found. On the other hand, the STPA method found 15 loops with 48 UCAs and 106 causal scenarios. In the end, it is recommended that the Decision Maker establishes a cut-off criterion, that is, a Hierarchy of Management and Control of the identified UCAs. The proposed methods follow the line of sociotechnical systems, considering the difficulty of the decision-maker for risk analysis in aerospace research projects. Thus, this work presents a structure of different methods covering the entire risk management process, increasing the difficulty in fulfilling the mission due to the level of complexity of the project, and supporting strategies for coordinated decision-making.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Abdulkhaleq, A., Wagner, S., & Leveson, N. (2015). A Comprehensive Safety Engineering Approach for Software-Intensive Systems Based on STPA. In de B. R. J. & K. N. (Eds.), 3rd European STAMP Workshop, STAMP EU 2015 (Vol. 128, pp. 2–11). Institute of Software Technology, University of Stuttgart, Stuttgard, Germany: Elsevier Ltd. doi: 10.1016/j.proeng.2015.11.498

ABNT. (2018). Gestão de riscos - Diretrizes, NBR ISO 31000. Associação Brasileira de Normas Técnicas (ABNT).

Amaral, É. H. do, Amaral, M. M., & Nunes, R. C. (2010). Metodologia para Cálculo do Risco por Composição de Métodos. X Simpósio Brasileiro Em Segurança Da Informação e de Sistemas Computacionais. 10(1), 460-473. Retrieved from http://ceseg.inf.ufpr.br/anais/2010/06_artigos_completos/artigo_37.pdf

Armson, R. (2011). Growing wings on the way: systems thinking for messy situations. Axminster: Triarchy Press.

Bellini, C. G. P., Rech, I., & Borenstein, D. (2004). Soft Systems Methodology: uma aplicação no “pão dos pobres” de Porto Alegre. RAE Eletrônica, 3(1), 1-22. doi: 10.1590/S1676-56482004000100007

Bjerga, T., Aven, T., & Zio, E. (2016). Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM. Reliability Engineering and System Safety. 156(1), 203–209. doi: 10.1016/j.ress.2016.08.004

Campolina, A. G., Soárez, P. C. de, Amaral, F. V. do, & Abe, J. M. (2017). Análise de decisão multicritério para alocação de recursos e avaliação de tecnologias em saúde: tão longe e tão perto? Cadernos de Saúde Pública. 33(10), 1-15. doi: 10.1590/0102-311X00045517

Carbognin, B. (2017). Metodologia de verificação de sequência operacional em completação de poços baseada em interdependências (Universidade Estadual de Campinas-UNICAMP, master thesis). Retrieved from UNICAMP Online Research Acess Service (http://repositorio.unicamp.br/bitstream/REPOSIP/324309/1/Carbognin_Breno_M.pdf)

Checkland, P. B. (2000). Soft Systems Methodology: A Thirty Year Retrospective. Systems Research and Behavioral Science. 17(1), 11-58.

Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems. 114(1), 1–9. doi: 10.1016/S0165-0114(97)00377-1

Chenci, G. P., Rignel, D. G., & Lucas, C. A. (2011). Uma introdução a lógica fuzzy. Revista Eletrônica de Sistemas de Informação e Gestão Tecnológica. 1(1), 1-12.

Costa, R. F. P. da. (2012). Utilização de Metodologias Multicritério de apoio à decisão como ferramenta de suporte numa empresa de serviços energéticos (Instituto Superior de Engenharia do Porto, master thesis). Retrieved from https://core.ac.uk/download/pdf/302861858.pdf

Curo, R. S. G., & Belderrain, M. C. N. (2010). Uma aplicaçao do SSM para estruturar o problema da produçao científica de um curso de ensino superior. Conference: XVII Simpósio de Engenharia de Produção. 17(1), 1-11.

Ensslin, S. R. (2002). A incorporação da perspectiva sistêmico-sinergética na metodologia MCDA-Construtivista: uma ilustração de implementação. (Doctoral dissertation). Retrieved from UFSC Online Research Acess Service (https://repositorio.ufsc.br/handle/123456789/82357)

Figueira, J., Greco, S., & Ehrgott, M. (2016). Multiple Criteria Decision Analysis: State of the Art Surveys (1st ed.; G. Salvatore, Ed.). New York: Springer New York. doi: 10.1007/b100605

Hanafizadeh, P., & Mehrabioun, M. (2018). Application of SSM in tackling problematical situations from academicians’ viewpoints. Systemic Practice and Action Research, 31(2), 179–220. doi: 10.1007/s11213-017-9422-y

Heyer, R. (2004). Understanding Soft Operations Research: The methods, their applications and its future in the Defence setting. Australian: Australian Goverment. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a428464.pdf

Hollnagel, E. (2004). Barriers and Accident Prevention (1st ed.). Ashgate: Routledge. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/00140130600971077?journalCode=terg20

Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making (1st ed.; T. & F. Group, Ed.). Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-48318-9

Ishizaka, A., & Nemery, P. (2013). Multi-Criteria Decision Analysis. Chichester: John Wiley & Sons Ltd. doi: 10.1002/9781118644898

Kore, M. N. B., Ravi, K., & Patil, S. B. (2017). A Simplified Description of FUZZY TOPSIS Method for Multi Criteria Decision Making. International Research Journal of Engineering and Technology (IRJET), 4(5), 2395–56. doi: 2395-0072

Leveson, N. G. (2003). A new approach to hazard analysis for complex systems. Conference of the. System Safety Society. 20(1), 24-34.

Leveson, Nancy G. (2004). A new accident model for engineering safer systems. Safety Science. 42(4), 237–270. doi: 10.1016/S0925-7535(03)00047-X

Leveson, Nancy G. (2011). Engineering a Safer World: Systems Thinking Applied to Safety (Engineering Systems) (1st ed.). Cambridge: MIT Press. doi: 10.1017/CBO9781107415324.004

Leveson, Nancy G. (2013). An STPA Primer. Retrieved from https://fliphtml5.com/sgqs/syzv/basic

Leveson, Nancy G. (2015). A systems approach to risk management through leading safety indicators. Reliability Engineering & System Safety, 136, 17–34. doi: 10.1016/j.ress.2014.10.008

Leveson, Nancy G., & Thomas, J. P. (2018). STPA Handbook. Retrieved from http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

Lima Junior, F. R., & Carpinetti, L. C. R. (2015). Uma comparação entre os métodos TOPSIS e Fuzzy-TOPSIS no apoio à tomada de decisão multicritério para seleção de fornecedores. Gestão & Produção, 22(1), 17–34. doi: 10.1590/0104-530X1190

Mingers, J., & Rosenhead, J. (2004). Problem structuring methods in action. European Journal of Operational Research, 152(3), 530–554. doi: 10.1016/S0377-2217(03)00056-0

Parrilla, F. R., Araújo Júnior, L. S. de, Belderrain, C. M. N., Bergiante, N. C. R., & Belderrain, M. C. N. (2018). Estruturação do problema da baixa motivação do aluno em uma instituição de ensino superior privada. Revista Gestão Em Engenharia. 5(1), 1–18.

Pedrosa Filho, L. E. (2016). Análise de acidentes de trabalho como ferramenta de gestão de segurança em uma empresa de transporte ferroviário (Universidade Federal de Juiz de Fora-UFJF). Retrieved from UFJF Online Research Acess Service (http://www.ufjf.br/engenhariadeproducao/files/2015/10/luizeduardopedrosafilho.pdf)

Picanço, A. R. S., Jeske, M., Belderrain, C., Neto, L. L. de S., & Bergiante, N. (2017). Ranqueamento de criticidade global de equipamentos por meio de análise de decisão multicritério. Oficina Nacional de Problemas de Corte e Empacotamento, Planejamento e Programação de Produção e Correlatos – ONPCE. 8(1), 1-17.

PMI. (2013). Um guia do conhecimento em gerenciamento de projetos (PMBOK, 6th edition). Newtown Square: Project Management Institute.

Rasmussen, J. (1997). Risk management in a dynamic society: a modelling problem. Safety Science, 27(2–3), 183–213. doi: 10.1016/S0925-7535(97)00052-0

Rosenhead, J., & Mingers, J. (2001). Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty, and Conflict. Chichester: Wiley. doi: 10.1016/j.ejor.2004.03.004

Simonsen, J. (1994). Soft Systems Methodology – An Introduction. Roskilde: Spring.

Sodhi, B., & T., P. (2012). A Simplified Description of Fuzzy TOPSIS. Computing Research Repository – CoRR. 1(2), 1-4.

Water, H. van de, Schinkel, M., & Rozier, R. (2007). Fields of application of SSM: a categorization of publications. Journal of the Operational Research Society. 58(3), 271–287. doi: 10.1057/palgrave.jors.2602156

فروشگاه اینترنتی