Periodicity.: May - June 2020
e-ISSN......: 2236-269X
Cover Image

Geometric brownian motion: an alternative to high-frequency trading for small investors

Eder Oliveira Abensur, Davi Franco Moreira, Aline Cristina Rodrigues de Faria

Abstract


High-frequency trading (HFT) involves short-term, high-volume market operations to capture profits. To a large extent, these operations take advantage of early access to information using fast and sophisticated technological tools running on supercomputers. However, high-frequency trading is inaccessible to small investors because of its high cost. For this reason, price prediction models can substitute high-frequency trading in order to anticipate stock market movements. This study is the first to analyze the possibility of applying Geometric Brownian Motion (GBM) to forecast prices in intraday trading of stocks negotiated on two different stock markets: (i) the Brazilian stock market (B3), considered as a low liquidity market and (ii) the American stock market (NYSE), a high liquidity market. This work proposed an accessible framework that can be used for small investors. The portfolios formed by Geometric Brownian Motion were tested using a traditional risk measure (mean-variance). The hypothesis tests showed evidences of promising results for financial management.

Keywords


Geometric Brownian motion; high-frequency trading; algorithmic trading; financial engineering; statistical inference

Full Text:

PDF HTML

References


ABENSUR, E. O. (2014) Markov Chain Portfolio Liquidity Optimization Model. Independent Journal of Management & Production, v. 5, n. 2, p. 360-380.

ABIDIN, S. N. Z.; JAFFAR, M. M. (2012) A Review on Geometric Brownian Motion in Forecasting the Share Prices in Bursa Malaysia. World Applied Sciences Journal, v. 17, p. 87-93.

ACTION STAT PRO PARA EXCEL. ACTION STAT PRO PARA EXCEL. Estatcamp, Available: http://www.portalaction.com.br/.

AHMADI-JAVID, A. (2012) Entropic Value-at-Risk: A New Coherent Risk Measure. Journal of Optimization Theory and Applications, v. 155, n. 3, p. 1105–1123. Available: DOI: 10.1007/s10957-011-9968-2.

ANDERSON, D. R.; SWEENEY, D .J.; WILLIAMS, T. A. (2010) Statistics for Business and Economics, Nashville: South-Western College Pub.

BLACK, F.; SCHOLES, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, v. 81, n. 3, p. 637–654.

BODINEAU, T.; GALLAGHER, I; SAINT-RAYMOND, L. (2016) The Brownian Motion as the Limit of a Deterministic System of Hard-Spheres. Inventiones Mathematicae, v. 203, n. 2, p. 493-553.

CARRADORI, R. G.; RAMOS, P. S. (2014) Avaliação de Testes de Normalidade Implementados no Programa R por Simulação de Monte Carlo. Revista da Estatística UFOP, v. 3, n. 2, p. 33-41.

CASTELLANO, R.; CERQUETI, R. (2014) Mean–Variance portfolio selection in presence of infrequently traded stocks. European Journal of Operational Research, v. 234, n. 2, p. 442-449. Available: https://doi.org/10.1016/j.ejor.2013.04.024.

CHABOUD, A. P. ; CHIQUOINE, B.; HJALMARSSON, E.; VEGA, C. (2014) Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market. The Journal of Finance, v. 69, n. 5, p. 2045-2084. DOI: 10.1111/jofi.12186.

CHOI, T. M.; CHUI, C. H. (2012) Mean-Downside-Risk and Mean-Variance Newsvendor Models: Implications for Sustainable Fashion Retailing. International Journal of Production Economics, v. 135, n. 2, p. 552-560. DOI: https://doi.org/10.1016/j.ijpe.2010.10.004.

COLMAN, D. L.; WIENANDTS, M. E. L.; DE PIETRO, T. C. (2013). Análise de dados intraday usando a teoria da matriz aleatória. Academia. Available: .

CUI, X.; GAO, J.; LI, X.; LI, D. (2014) Optimal Multi-Period Mean-Variance Policy Under No-Shorting Constraint. European Journal of Operational Research, v. 234, n. 2, p. 459-468. DOI: https://doi.org.10.1016/j.ejor.2013.02.040.

HASBROUCK, J.; SAAR, D. S. (2013) Low-latency Trading. Journal of Financial Markets, v. 16, n. 4, p. 646-679. DOI: https://doi.org/10.1016/j.finmar.2013.05.003.

HENDERSHOTT, T.; JONES, C. M.; MENKELVELD, A. J. (2011) Does Algorithmic Trading Improve Liquidity? The Journal of Finance, v. 66, n. 1, p. 1-33. DOI: 10.1111/j.1540-6261.2010.01624.x.

HILLIER, F. S.; LIEBERMAN, G. J. (2015) Introduction to Operations Research, New York: McGraw-Hill.

IMAN, R. L.; CONOVER, W. J. (1983) A Modern Approach to Statistics. New York, John Wiley & Sons.

ITO, K. (1944) Stochastic Integral. In: Imperial Academy, 20, Tokyo, Proceedings…., Tokyo: Imperial Academy. Available: https://projecteuclid.org/download/pdf_1/euclid.pja/1195572786.

IWAKI, H.; LUO, L. (2013) An Empirical Study of Option Prices under the Hybrid Brownian Motion Model. Journal of Mathematical Finance, v. 3, p. 329-334. Available: http://dx.doi.org/10.4236/jmf.2013.32033.

KEIM, D.; STAMBAUGH, R. (1984) A Further Investigation of the Weekend Effect in Stock Returns. The Journal of Finance, v. 39, n. 3, p. 819-835. DOI: 10.1111/j.1540-6261.1984.tb03675.x.

KHARROUBI, I.; LIM, T. ; NGOUPEYOU, A. (2013) Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump. Applied Mathematics & Optimization, v. 68, n. 3, p. 413–444. DOI: https://doi.org/10.1007/s00245-013-9213-5.

KOGAN, L.; PAPANIKOLAOU, D. (2014) Growth Opportunities, Technology Shocks, and Asset Prices. The Journal of Finance, v. 69, n. 2, p. 675-718. DOI: 10.1111/jofi.12136.

LAGE, E. L. D. C. (2011) Avaliação de Projetos de Shopping Center: Aplicação da Teoria de Opções Reais. Dissertation (Master in Production Engineering). Available: http://bibliotecadigital.fgv.br/dspace/handle/10438/6541.

LIOUI, A.; PONCET, P. (2016) Understanding Dynamic Mean Variance Asset Allocation. European Journal of Operational Research, v. 254, n. 1, p. 320-337. Available: https://doi.org/10.1016/j.ejor.2016.04.003.

MARKOWITZ, H. (1952) Portfolio Selection. The Journal of Finance, v. 7, n. 1, p. 77-91. DOI:10.1111/j.1540-6261.1952.tb01525.x.

MARKOWITZ, H. (2014) Mean–Variance Approximations to Expected Utility. European Journal of Operational Research, v. 234, n. 2, p. 346-355. Available: https://doi.org/10.1016/j.ejor.2012.08.023.

MCNEIL, J. A.; FREY, R.; EMBRECHTS, P. (2015) Quantitative Risk Management: Concepts, Techniques and Tools, United Kingdom: Princeton University Press.

MENKVELD, A. (2013) High Frequency Trading and the New Markets. Journal of Financial Markets, v. 16, n. 4, p. 712-740. DOI: doi.org/10.1016/j.finmar.2013.06.006.

NOYAN, N.; RUDOLF, G. (2013) Optimization with Multivariate Conditional Value-at-Risk Constraints. Operations Research, v. 61, n. 4, p. 990-1013. DOI: https://doi.org/10.1287/opre.2013.1186.

PENTAGNA, A. P. (2015) High Frequency Trading: Riscos e Propostas de Regulamentação. Monography. Available from: http://acervodigital.ufpr.br/bitstream/handle/1884/42903/MONOGRAFIA05-2015.pdf?sequence=1&isAllowed=y.

QIN, Z. (2015) Mean-Variance Model for Portfolio Optimization Problem in the Simultaneous Presence of Random and Uncertain Returns. European Journal of Operational Research, v. 245, n. 2, p. 480-488. DOI: https://doi.org/10.1016/j.ejor.2015.03.017.

REDDY, K.; CLINTON, V. (2016) Simulating Stock Prices Using Geometric Brownian Motion: Evidence from Australian Companies. Australian Accounting, Business and Financial Journal, v. 10, n. 3, p. 23-47. DOI:10.14453/aabfj.v10i3.3.

REBOREDO, J. C.; RIVERA-CASTRO, M. A.; MIRANDA, J. G. V.; GARCIA-RUBIO, R. (2013) How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis. Physica A, v. 392, p. 1631-1637. DOI:10.1016/j.physa.2012.

ROCKAFELLAR, R.; URYASEV, S. (2000) Optimization of Conditional Value-at-Risk. Journal of Risk, v. 3, n. 2, p. 21-41.

ROSS, S. Introduction to Probability Models (2014), San Diego: Elsevier.

SECURITIES AND EXCHANGE COMMISSION-SEC. (2014) Equity Market Structure Literature Review Part II: High Frequency Trading. Available: https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf

SEYF, H. R.; NIKAAEIN, B. (2012) Analysis of Brownian Motion and Particle Size Effects on the Thermal Behavior and Cooling Performance of Microchannel Heat Sinks. International Journal of Thermal Sciences, v. 58, n. 1, p. 36-44. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.02.022.

SHENG, S. P.; LIU, M.; SAIGAL, R. (2015) Data-Driven Channel Modeling Using Spectrum Measurement. IEEE Transactions on Mobile Computing, v. 14, n. 9, p. 1794-1805. DOI: 10.1109/TMC.2014.2374152.

SHIN, H.; JUNG, Y.; JEONG, C.; HEO, J. H. (2012) Assessment of Modified Anderson–Darling Test Statistics for the Generalized Extreme Value and Generalized Logistic Distributions. Stochastic Environmental Research and Risk Assessment, v. 26, n. 1, p. 105-114.

SIGMAN, K. (2006) Notes on Financial Engineering (Columbia University). Available: http://www.columbia.edu/~ks20/FE-Notes/4700-07-Notes-GBM.pdf.

WIENER, N. (1923) Differential Space, Journal of Mathematical Physics, v. 2, p. 131–174 DOI: 10.1002/sapm192321131.

ZHANG, S.; ZHOU, W. (2015). Probabilistic Characterization of Metal-Loss Corrosion Growth on Underground Pipelines Based on Geometric Brownian Motion Process. Structure and Infrastructure Engineering, v. 11, n. 2, p. 238-252. DOI: http://dx.doi.org/10.1080/15732479.2013.875045.

ZHOU, Q. X. (2015) The Application of Fractional Brownian Motion in Option Pricing. Structure and Infrastructure Engineering, v. 10, n. 1, p. 173-182.




DOI: http://dx.doi.org/10.14807/ijmp.v11i3.1114

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Eder Oliveira Abensur, Davi Franco Moreira, Aline Cristina Rodrigues de Faria

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

LIBRARIES BY

Logo Gaudeamus

Logo INDIANA

Logo CHENG KUNG

Logo UTEP

Logo MOBIUS

Logo UNIVEM

Logo Kennedy

Logo Columbia

Logo UCS

Logo MSG/UFF

Logo OPT

Logo Biblioteca Professor Milton Cabral Moreira

Logo UFL

Logo ULRICHSWEB

Logo UNISA